NRAP Phase II Tools and Workflows: DREAMv3

at the 2021 GWPC Annual Forum

September 29, 2021

DREAM Overview

Designs for Risk Evaluation and Management (DREAM) leverages output from reservoir simulators to design risk-minimized monitoring plans.

- Configurations are optimized based on sensor locations and specified monitoring parameters
- A defined budget limits the number of monitoring wells and technologies
- DREAM iterates across placement scenarios until it converges on the optimal configuration of sensors

DREAM Workflow

DREAM V3

- Uses a computationally-efficient simulated annealing approach
- Evaluates 100k+ potential monitoring plans for 1k+ simulated hypothetical leaks

DREAM Workflow

Site Characterization

Site Assessment Exploratory Drilling Pumping Tests Conceptual Modelling Simulation Sensitivity Analysis

Leak scenario: Output from full-physics simulators (TOUGH2, STOMP, ...) or ML approximations

Sensor information

- **Type:** Pressure, CO2 sat., gravity...
- Detection threshold

Constraints (budget, drilling access, etc)

DREAM V3

- Uses a computationally-efficient simulated annealing approach
- Evaluates 100k+ potential monitoring plans for 1k+ simulated hypothetical leaks

DREAM Workflow

Site Characterization

Site Assessment **Exploratory Drilling Pumping Tests**

Conceptual Modelling Simulation Sensitivity Analysis

Leak scenario: Output from full-physics simulators (TOUGH2, STOMP, ...) or ML approximations

Sensor information

- **Type:** Pressure, CO2 sat., gravity...
- **Detection threshold**

Constraints (budget, drilling access, etc)

DREAM V3

- Uses a computationally-efficient simulated annealing approach
- Evaluates 100k+ potential monitoring plans for 1k+ simulated hypothetical leaks

with the highest potential to detect leakage and minimize aguife legradation in the shortest amount of time

DREAM was developed as part of the National Risk Assessmen

Monitoring plan

Optimally protective monitoring plan

Minimize monitoring Cost

- Hypothetical Geologic Carbon Storage (GCS) site
 - Single injection well (250MT over 50 years)
 - Many (37,000) legacy wells
- Probabilistic leak scenarios from NRAP-Open-IAM
- Designated handful of hypothetically leaky wells
- Designed optimally protective monitoring plan

Lackey G, VS Vasylkivska, NJ Huerta, S King, and RM Dilmore. 2019. "Managing well leakage risks at a geologic carbon storage site with many wells." *International Journal of Greenhouse Gas Control* 88:182-194

Kimberlina OpenIAM Model

Kimberlina OpenIAM Model

Kimberlina OpenIAM Model

- All leak scenarios detectable within first 20 years
- Quantifies the risks of reducing the post-injection site care period below 50 years

Bacon, Diana H., et al. "Risk-based post injection site care and monitoring for commercial-scale carbon storage: Reevaluation of the FutureGen 2.0 site using NRAP-Open-IAM and DREAM." *International Journal of Greenhouse Gas Control* 90 (2019): 102784.

Walkthrough

Kimberlina OpenIAM Model

- 1. Provide hypothetical leakage scenarios
- 2. Define impact thresholds, weighting coefficients
- 3. Define detection thresholds
- 4. Restrict number/cost of wells, sensors
- 5. Select algorithm, number of monitoring plans to evaluate
- 6. Results available within GUI or excel

Thank you!

Comments and Questions:

National Risk Assessment Partnership

alexander.hanna@pnnl.gov

NRAP Website: https://edx.netl.doe.gov/nrap/

Sign up for NETL EDX: https://edx.netl.doe.gov/user/register

